Smoothy Slim
Photo: Ivan Babydov
Quercetin is lipophilic compound, thus dietary fat enhances its bioavailability. Nondigestible fiber may also improve quercetin bioavailability. Quercetin bioavailability is greater when it is consumed as an integral food component.
Yes, banana smoothies are good for weight loss. They are rich in fibre content and control hunger hormones. Their sweet taste and creamy texture...
Read More »
Eating one meal a day is unlikely to give you the calories and nutrients your body needs to thrive unless carefully planned. Choosing to eat within...
Read More »
This effective juice jolts the metabolism, boosts energy and burns fat all day.
Learn More »
Clear liquids include water, coffee, Sprite or 7up, Kool-aid (no red or green), popsicles (no red or purple), lemonade, Gatorade, strained fruit...
Read More »
Home Care Post-Treatment It's crucial you keep your face (treated areas) covered and moist at all times. We just recommend covering your face with...
Read More »
This effective juice jolts the metabolism, boosts energy and burns fat all day.
Learn More »Quercetin bioavailability is better when quercetin is consumed as a cereal bar ingredient instead of capsule (Egert et al., 2012). Its greater absorption may be related with manufacturing process that yields a homogenous solid dispersion of quercetin with other cereal ingredients. Solid dispersions have greater surface area that promotes dissolution in the intestinal lumen, thereby promoting bioavailability (Guo et al., 2015). Dietary fat improved quercetin bioavailability in a study with pigs (Lesser et al., 2004). Quercetin ingestion with short chain fructooligosaccharide (FOS) improves quercetin bioavailability (Matsukawa et al., 2009). Quercetin bioavailability of vacuum impregnated apple chips (AUC 0-1440 min = 104±24 µmol.min.L-1) as functional food was similar to the supplementation with apple peel extract capsules (AUC 0-1440 min = 87±24 µmol.min.L-1) in humans (Petersen et al., 2016). More research are needed to prove that quercetin in food matrix provides greater bioavailability than capsule forms. Quercetin bioavailability is characterized by high intersubject variability (Kaushik et al., 2012). For instance, quercetin AUC 0-24 h was 8.9-89.1 µM.h following ingestion of onion-derived quercetin glucosides at a dose equivalent to 100 mg quercetin aglycone (Graefe et al., 2001). Quercetin C max was 0.29-2.26 µM in adults who ingested a beverage containing 500 mg quercetin aglycone (Kaushik et al., 2002). Intersubject variations for time to C max (T max ) and elimination half-life (t 1/2 ) of quercetin in adults were 69% and 122% respectively, following ingestion of 100 mg apple-derived quercetin glycosides (Lee et al., 2012). Likewise, 50 mg quercetin supplementation in adults results in highly variable plasma concentrations (38-194 nM) (Egert et al., 2008). Differences in β-glucosidase activity, a determinant of intestinal uptake of quercetin glucosides, promote intersubject variation in quercetin glycoside absorption (Nemeth et al., 2003; Day et al., 2003; Guo et al., 2015). Additionally, intersubject variations in intestinal and hepatic phase II quercetin –metabolizing enzymes (UGT, specifically UGT1A family; SULT, specifially SULT1A family; COMT) are speculated to contribute to interindividual differences in quercetin metabolism (Egert et al., 2008). There is no clear evidence demonstrating that gender and age affect quercetin bioavailability (Guo et al., 2015). Exceptional finding was that quercetin from quercetin-3-rutinoside was more bioavailable in women compared with men (Erlund et al., 2000). A quercetin study in humans suggest that individual differences in plasma vitamin C status may contribute to intersubject variability in quercetin bioavailability (Guo et al., 2014). Some in vitro studies also showed that vitamin C protects quercetin against oxidative degredation (Skaper et al., 1997; Takahama et al., 2003). More clinical studies are necessary to define if vitamin C status regulates quercetin bioavailability. In conclusion, quercetin has several health effects and thereby, its bioavailability is really significant and unfortunately, is poor. Many factors such as glucose moieties, solubility, human factor, vitamin C status and food matrix can affect bioavailability. More research is warranted to evaluate and improve bioavailability of quercetin.
It “reboots” your digestive system Your stomach, intestines, kidneys, liver, brain – it all needs to start working. If you're constantly eating...
Read More »
Oats may have protective effects for the liver as they contain a specific type of fibre called beta-glucan. One study showed that beta-glucan...
Read More »
Contains a potent powdered supplement blended right into water or your favored beverage to be appreciated as a scrumptious morning smoothy.
Learn More »CrossRef Guo, Y., Bruno, R. S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 26: 201-210 (2015). CrossRef Guo, Y., Mah., E., Bruno, R. S. Quercetin bioavailability is associated with inadequate plasma vitamin C status and greater plasma endotoxin in healthy adults. Nutrition, 30: 1279-1286 (2014). CrossRef Hayek, T., Fuhrman, B., Vaya, J., Rosenblat, M., Belinky, P., Coleman, R. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb. Vasc. Biol. 17: 2744-2752 (1997). CrossRef Heim, K., Tagliaferro, A. R., Bobilya, D. J. Flavonoid antioxidants: chemistry and structure-activity relationship. J Nutr Biochem., 13 (10): 572-584 (2002). CrossRef Hollman, P. C., van Trijp, J. M., Buysman, M. N. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett., 418: 152-156 (1997). CrossRef Hollman, P. C., van Trijp, J. M., Mengelers, M. J. Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett., 114: 139-140 (1997). CrossRef Jackson, M. J., The assessment of bioavailability of micronutrients: introduction. Eur. J. Clin. Nutr., 51: 1-2 (1997). Jaganath, I.B., Mullen, W., Edwards, C. A., Crozier, A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic. Res., 40: 1035-1046 (2006). CrossRef Kaushik, D., O’Fallon, K., Clarkson, P. M., Dunne, C. P., Conca, K. R., Michniak-Kohn, B. Comparision of quercetin pharmacokinetics following oral supplementation in humans. J. Food Sci., 77: 231-238 (2012). CrossRef Khaled, K. A., El-Sayed, Y. M., Al-Hadiya, B. M. Disposition of the flavonoid quercetin in rats after single intravenous and oral doses. Drug Dev. Ind. Pharm., 29: 397-403 (2003). CrossRef Kim, D.H., Jung, E. A., Sohng, I. S., Han, J.A., Kim, T. H., Han, M. J. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res., 21: 17-23 (1998). CrossRef Lee, J., Mitchell, A. E. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans. J. Agric. Food Chem., 60: 3874-3881 (2012). CrossRef Lesser, S., Cermak, R., Wolffram, S. Bioavailability of quercetin in pigs is influenced by the dietary fat content. J. Nutr., 134: 1508-1511 (2004). CrossRef Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R. V., Washko, P. W., Dhariwal, K. R. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci., 93: 3704-3709 (1996). CrossRef Manach, C., Morand, C., Demigne, C. Bioavailability of rutin and quercetin in rats. FEBS Lett., 409: 12-16 (1997). CrossRef Matsukawa, N., Matsumoto, M., Shinoki, A., Hagio, M., Inoue, R., Hara, H. Nondigestible saccharides supress the bacterial degradation of quercetin aglycone in the large intestine and enhance the bioavailability of quercetin glucoside in rats. J. Agric. Food. Chem., 57: 9462-9468 (2009). CrossRef Nait, C. M., Al., A. A., Peluso, J., Muller, C. D., Ubeaud, G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol., 61: 1473-1483 (2009). CrossRef Nemeth, K., Plumb, G. W., Berrin, J. G., Juge, N., Jacob, R., Naim, H. Y. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr., 42: 29-42 (2003). CrossRef Olthof, M. R., Hollman, P.C., Vree, T. B., Katan, M. B. Bioavailabilities of quercetin-3-glucoside and quercetin-4´-glucoside do not differ in humans. J. Nutr., 130: 1200-1203 (2000). CrossRef Pereira, M. A., Grubbs, C.J., Barnes, L.H., Li, H., Olson, G.R., Eto, I. Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12 dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis, 17:1305-1311 (1996). CrossRef Petersen, B., Egert, S., Bosy-Westphal, A., Müller, M. J., Wolffram, S., Hubbermann, E. M., Rimbach, G., Schwarz, K. Bioavailability of quercetin in humans and the influence of food matrix comparing quercetin capsules and different apple sources. Food Res. Int., 88: 159-165 (2016). CrossRef Pool, H., Mendoza, S., Xiao, H., McClements D. J. Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: impact of physical form on quercetin bioaccessibility. Food Func., 4: 162-174. Retzlaff, J. A., Tauxe, W. N., Kiely, J. M., Stroebel, C. F. Erythrocyte volume, plasma volume and, lean body mass in adult men and women. Blood, 33:649-661 (1969). Rothwell, J. A. Perez-Jimenez, J., Neveu, V., Medina-Remon, A., M´Hiri, N., Garcia-Lobato, P. Phenol explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) 2013. http://phenol-explorer.eu/contents/polyphenol/291 Skaper, S. D., Fabris, M., Ferrari, V., Dalle Carbonare, M., Leon, A. Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid. Free Radic. Biol. Med., 22: 669-678 (1997). CrossRef Takahama, U., Yamamoto, A., Hirota, S., Oniki, T. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interactions between quercetin and ascorbic acid during the reduction. J. Agric. Food Chem., 51: 6014-6020 (2003). CrossRef Verma, A. K., Johnson, J.A., Gould, M. N., Tanner, M.A. Inhibition of 7,12-dimethylbenz(a)anthracene and N-nitrosomethylurea induced mammary cancer by dietary flavonol quercetin. Cancer Res., 48:5754- 88 (1998). Walgren, R. A., Walle, U. K., Walle, T. Transport of quercetin and its glucosides across human intastinal epithelial Caco-2 cells. Biochem. Pharmacol., 55: 1721-1727. CrossRef Wolffram, S., Block, M., Ader, P. Quercetin-3-glucoside is transported by the glucose carrier SLGT1 across the brush border membrane of rat small intestine. J. Nutr., 132: 630-635 (2002). CrossRef Yoo, K.S., Lee, E. J., Patil, B. S. Quantification of quercetin glycosides in 6 onion cultivars and comparisions of hydrolysis-HPLC and spectrophotometric methods in measuring total quercetin concentrations. J. Food Sci., 75: 160-165 (2010).
The traditional Japanese diet focuses on whole, minimally processed, nutrient-rich, seasonal foods. It's particularly rich in seafood, vegetables,...
Read More »
How To Lose 5 Pounds Fast Drink Two Glasses of Water Before Every Meal. ... Reduce Bloating. ... Get Eight Hours of Sleep. ... Avoid Processed...
Read More »
This effective juice jolts the metabolism, boosts energy and burns fat all day.
Learn More »
Cinnamon Risks While this spice has many favourable aspects, there is a downside to most types of cinnamon: coumarin. Coumarin is a chemical...
Read More »
This effective juice jolts the metabolism, boosts energy and burns fat all day.
Learn More »
Read on to quench your thirst the heart-healthy way. Water. ... Tea or coffee without sugar. ... Sugar-free drinks e.g. sugar-free cola, sugar-free...
Read More »